Can phone data detect real-time unemployment?

canphonedata

If you leave your job, chances are your pattern of cellphone use will also change. Without a commute or workspace, it stands to reason, most people will make a higher portion of their calls from home—and they might make fewer calls, too.

Now a study co-authored by MIT researchers shows that mobile phone data can provide rapid insight into employment levels, precisely because people’s communications patterns change when they are not working.
Indeed, using a plant closing in Europe as the basis for their study, the researchers found that in the months following layoffs, the total number of calls made by laid-off individuals dropped by 51 percent compared with working residents, and by 41 percent compared with all phone users. The number of calls made by a newly unemployed worker to someone in the town where they had worked fell by 5 percentage points, and even the number of individual cellphone towers needed to transmit the calls of unemployed workers dropped by around 20 percent.
“Individuals who we believe to have been laid off display fewer phone calls incoming, contact fewer people each month, and the people they are contacting are different,” says Jameson Toole, a PhD candidate in MIT’s Engineering Systems Division, and a co-author of the new paper. “People’s social behavior diminishes, and that might be one of the ways layoffs have these negative consequences. It hurts the networks that might help people find the next job.”
When the factory closes

The paper, just published in the Journal of the Royal Society Interface, builds a model of cellphone usage that lets the researchers correlate cellphone usage patterns with aggregate changes in employment. The researchers believe the phone data closely aligns with standard unemployment measures, and may allow analysts to make unemployment projections two to eight weeks faster than those made using traditional methods.
“Using mobile phone data to project economic change would allow almost real-time tracking of the economy, and at very fine spatial granularities … both of which are impossible given current methods of collecting economic statistics,” says David Lazer, a professor at Northeastern University and a co-author of the paper.
In addition to Toole and Lazer, the co-authors of the paper are Marta Gonzalez, an associate professor of civil and environmental engineering at MIT; Yu-Ru Lin of the University of Pittsburgh; Erich Muehlegger of the University of California at Davis; and Daniel Shoag of the Harvard Kennedy School.

References:http://phys.org/

New fog chamber provides testing options that could improve security cameras

newfogchambe

Fog can play a key role in cloaking military invasions and retreats and the actions of intruders. That’s why physical security experts seek to overcome fog, but it’s difficult to field test security cameras, sensors or other equipment in fog that is often either too thick or too ephemeral.
Until now, collecting field test data in foggy environments was time-consuming and costly. “Fog is difficult to work with because it rarely shows up when needed, it never seems to stay around long enough once you’re ready to test and its density can vary during testing,” said Rich Contreras, a systems engineer at Sandia National Laboratories.
That’s why Contreras and others started thinking about developing a controlled-fog environment for sensor testing. The sunny, high desert of New Mexico may seem an unlikely place to make fog, but Sandia has developed a fog chamber—one of the world’s largest—that meets the needs of the military, other government agencies and industry. The chamber is in a tunnel owned by the Air Force Research Laboratory.
“The ultimate goal of this whole endeavor is to defeat fog,” Contreras said. “From physical security and force protection aspects, as scientists and engineers who care about national security, we want to be able to make it so that a security force person at a site has the ability to maintain uninterrupted situational awareness.”
Researchers say the chamber will help develop and validate cameras’ and sensors’ abilities to penetrate fog, knowledge that could lead to improved surveillance at sites. The chamber also could be used to answer fundamental optics questions, which in time could lead to improved security camera lenses and medical imaging equipment, safer aircraft landings and better vision for drivers in fog.
“People need to see through fog,” said optical scientist Gabe Birch. “So much of the U.S. population is on the coastlines in places where fog exists. If you could discover an inexpensive technique to see better through it, there are a lot of people in industry who would be interested in that.”

Cloud microphysics used to characterize fog, prolong testing

This is not your Halloween party fog machine. Sandia’s fog chamber is 180 feet long, 10 feet tall and 11 feet wide. The chamber is enclosed by air curtains and rubber baffles to entrap the fog, approximating real-world conditions. Tunnel walls are painted with a special black paint to reduce reflection and improve data quality, Contreras said

Walk a few steps down the hallway when the chamber’s fog is at full strength and a sense of disorientation washes over an observer as the walls, ceiling and entranceway disappear and people only a few feet away fade first into dark, obscure silhouettes and then become invisible.
Sandia researchers use cloud microphysics to generate fog for video analytics, environmental testing and new sensor development. Currently, the chamber’s fog resembles that found in coastal regions, but output can be customized to produce fog physically similar to that found in any location, said Crystal Glen, an aerosol scientist. Researchers eventually hope to add smoke and dust to the chamber’s repertoire.
In the atmosphere, fog forms from a seed particle, such as pollen or sea salt, surrounded by layers of water. Seed particles differ based on the fog’s location. Sandia currently uses sodium chloride, or sea salt, as its seed particle to mimic the composition and particle size of coastal fog. By consulting journals or traveling to a region, researchers can measure the droplet size distribution and chemical composition of different fogs worldwide and then alter the seed particles to customize the fog.
The longer the fog’s seed particles hold onto the water layer, the longer they are visible for testing. The length of the test depends on the relative humidity in the chamber.
Glen mixes a solution of sodium chloride and water that produces the desired core particle seed diameter. The solution is sprayed into the chamber where the relative humidity is above 95 percent. The initial sprayed droplets are roughly 2.3 times their dry diameter.

The deliquescence point, or the amount of relative humidity required for a particle to take on water, happens at 72 percent relative humidity for coastal fog, primarily composed of sodium chloride. The amount of water clinging to the seed particle grows exponentially from there. This process happens naturally in the atmosphere and leads to fog and cloud formation, Glen said.
To speed up Mother Nature, Glen checks the rate at which a particle will gain or lose water in relation to the chamber’s relative humidity, termed the hysteresis curve for water interactions with sodium chloride. This information allows the team to target a specific relative humidity and obtain a desirable size for the wet particles, so the droplet size distribution is close to what is found in natural fog, she said. While the fog generated in the chamber is not identical to fog formed in nature, it is physically representative and extremely useful for research involving optical transmission and visibility.
Typically, gravity causes the fog to settle before the decrease in relative humidity takes effect. The fog density can remain constant for up to 30 minutes, allowing a test to last 10-20 minutes. Adding a 30-second blast of fog particles can prolong the testing, Glen said, adding that the fog’s density can be controlled by the amount sprayed into the chamber or the particle size.

Optics experts see potential of controlled fog

The layer of water around the fog seed particles either absorbs the photons, the elementary particles and waves that make up light, or causes them to change direction in random ways, so that by the time they reach the cameras being tested, the wavelengths being picked up create a fuzzy image, Birch said.

Optics researchers refer to fog and seeing through bodily tissue in medical imaging as “scattering environments.” Sandia optical engineer David Scrymgeour likens the photons’ movements in these environments to walking through a sunny, full parking lot and seeing glints of light bounce in every direction off windshields.

In fog, it’s the scattering of the photons that causes the car headlights or a pedestrian’s flashlight beam to illuminate an entire scene, making vision even more difficult, Scrymgeour explained.

In physical security, “the cameras are very sensitive to the sizes of fog particles and how the photons scatter. That’s why it’s so important to know the sizes of particles that we have in the environment, which is something that we in the optical field have not really had before,” Birch said. “It enables a lot of very interesting testing because you can finally characterize your system’s performance by knowing the scattering that’s happening in the environment.”

Fog chamber tests could lead to security camera improvements

For the military or any agency seeking to physically secure a site, not knowing the exact ranges that cameras can penetrate fog in a particular environment makes it difficult to choose the correct cameras and sensors and their placements, Contreras said.

Birch explained: “It’s very difficult to quantitatively compare all those modalities together with the same fog and in the same conditions because you go outside and five minutes later it could be very different.”

Once the chamber’s fog density is set, cameras or sensors mounted at one end of the tunnel are monitored to see how well they detect humans or custom targets, Contreras said.

Different types of lighting representing specific sites could be installed in the chamber to see the combined effect of fog and lighting or the desired time of day, he said.

Examples of tests include showing raw data from various cameras, characterizing how different wavelengths and polarization states are influenced by fog, comparing different optical systems in a controlled foggy environment and resolution testing to see how the optical properties and resolution degrade in a variety of foggy environments, Birch said. Polarization states describe the way electromagnetic waves oscillate as they propagate in space.

Fog chamber could provide answers for optics research

The fog chamber also could be used to answer fundamental scientific questions.

“When you look at the huge gap from the visible spectrum all the way up to the far infrared, no one can say we absolutely understand how the polarization states at all these different wavelengths behave as they go through a foggy atmosphere,” Birch said.

Recent research at Sandia has suggested that the polarization of photons could be exploited to see better through fog or other scattering environments, Scrymgeour said.

Researchers have ideas about how to use optics—for example, a filter on a camera lens—to exploit polarization, he added, but they need to be tested in a real-world environment, like the fog chamber.

Such testing could inform not only physical security camera design to better handle , but also medical imaging, he said, “The physics in scattering events are the same.”

References:http://phys.org/

Simple and cheap tunable gripper inspired by the gecko

upenn-gripper

A few months ago, we reported on the development of a material that uses the same technique employed by gecko feet to allow its adhesion to be turned on and off at will. This allows fragile components, like those used in the manufacture of semiconductors, to be carefully picked up and put down without suction or residue-leaving adhesives. Now researchers at the University of Pennsylvania (UPenn) have developed a gripper, also inspired by the gecko and also tunable, that they claim is much simpler, making it easy and cheap to mass produce.

The material developed by scientists at Germany’s Leibniz Institute for New Materials (INM) that we looked at in March mimics the microscopic mushroom-shaped, hair-like projections known as setae that are found on gecko feet. So, just like gecko feet, the manmade microscopic pillars created by the INM team temporarily bond to surfaces at the molecular level thanks to the van der Waals force. To switch the stickiness off, the structure of the pillars is altered electronically. The problem is that making these complicated structures is, well, complicated.

“Other researchers have mimicked [gecko setae] structures to achieve tunable adhesion, but they are tough to make,” says UPenn graduate student Helen Minsky. “You can make a few of these structures, but, if you want to make larger arrays of them, it becomes much tougher. The angles and the flared tip means you can’t just slip them out of a mold.”

So although they also took inspiration from the gecko, Minsky and Kevin Turner, the Gabel Family Term Associate Professor in the School of Engineering and Applied Science’s Department of Mechanical Engineering and Applied Mechanics, have taken a different approach.

They created a simple cylindrical post structure that consists of a hard plastic core surrounded by a softer silicone rubber shell. While the structure doesn’t mimic the mushroom shape of the gecko’s setae, it achieves the same result through the soft rubber conforming to the surface and the stress from lifting being concentrated on the stiff inner core. The adhesion is switched off through the application of lateral force, which shifts the stress to the edges and allows a crack to form and the bond to break.

“When it comes to tunable adhesion, everyone is familiar with the gecko, and everyone tries to copy it,” says Turner. “The problem is that it’s really hard to manufacture complex structures as well as nature. We’ve come up with a strategy that can achieve similar adhesion behavior but is much easier to make.”

The researchers have created prototype grippers that are a few millimetres in diameter and are designed to grip smooth surfaces, such as glass. However, they claim their experiments and simulations indicate that the composite structure will work in the same way when scaled down to microscopic sizes.

References:http://www.gizmag.com/

Inkless printing manipulates light at the nanoscale to produce colors

nanomaterial-printing

Taking advantage of the unique light absorbing properties of plasmonic metatamaterials, researchers have printed color images using nanoscale holes instead of ink.

Using nanometer-size metamaterials, researchers at Missouri University of Science and Technology have developed a technique to print images that uses the manipulation of light, rather than the application of ink, to produce colors. This “no-ink” printing method has been demonstrated by producing a Missouri S&T athletic logo just 50 micrometers wide.

In normal color printing, various semi-transparent inks are applied on top of each other to produce the various hues of a picture. In the technique developed by Missouri S&T, instead of ink, microminiature perforations are made in a multi-layered structure consisting of two thin films of silver separated by a film of silica 45 nanometers thick. The uppermost layer of silver film, just 25 nanometers deep, is punctured with miniscule holes using a focused ion-beam milling microfabrication process.

Using this process, the researchers created holes with different diameters (ranging in size from 45 to 75 nanometers) corresponding to the desired absorption of light at various wavelengths. As such, light shining onto the logo at specific frequencies allowed researchers to create different colors with reflected light instead of ink. This nano-scale “color palette” meant that the physical characteristics of the holes in the material determined the color displayed to accurately reproduce the S&T athletic logo.

“Unlike the printing process of an inkjet or laserjet printer, where mixed color pigments are used, there is no color ink used in our structural printing process – only different hole sizes on a thin metallic layer,” said Dr. Jie Gao, assistant professor of mechanical and aerospace engineering at Missouri S&T.

The nanoscale perforations used to provide this color are so small as to only be visible with the help of an electron microscope, but they allowed the researchers to reproduce the standard colors of the S&T logo, and also to manipulate the light to produce four new colors to make an orange ampersand, a navy blue “Missouri”, a magenta “S” and “T”, and a cyan pickaxe symbol.

As the sandwiched silver/silica material acts as a plasmonic device, the Missouri S&T team believes that mechanical color printing on such materials provides a much higher printing resolution than conventional color printing. This is because their research shows that the periodic holes on the surface of the silver film provides excitation of surface-plasmon polaritons (electromagnetic waves that travel along the surface of a metal-dielectric or metal-air interface) and create an optical magnetic dipole resonance which results in near-perfect light absorption and negligible reflection in the material.

As a combination of substances that provide functions or phenomena that act in ways not yet found in nature, the printing substrate is also a metamaterial. As such, its unique properties may allow it to be used in ways not previously possible in the areas of nanoscale visual arts, security tagging, and information storage. The researchers also believe that such a method of printing should also result in a reduced material count in relation to standard printing methods, and could lead to lower costs, easier recycling, and higher fidelity and stability in image reproduction.

References: