What happens when Newton’s third law is broken?

newtonsthird

Even if you don’t know it by name, everyone is familiar with Newton’s third law, which states that for every action, there is an equal and opposite reaction. This idea can be seen in many everyday situations, such as when walking, where a person’s foot pushes against the ground, and the ground pushes back with an equal and opposite force. Newton’s third law is also essential for understanding and developing automobiles, airplanes, rockets, boats, and many other technologies.

Even though it is one of the fundamental laws of physics, Newton’s third law can be violated in certain nonequilibrium (out-of-balance) situations. When two objects or particles violate the third law, they are said to have nonreciprocal interactions. Violations can occur when the environment becomes involved in the interaction between the two particles in some way, such as when an environment moves with respect to the two particles. (Of course, Newton’s law still holds for the complete “particles-plus-environment” system.)

Although there have been numerous experiments on particles with nonreciprocal interactions, not as much is known about what’s happening on the microscopic level—the statistical mechanics—of these systems.

In a new paper published in Physical Review X, Alexei Ivlev, et al., have investigated the statistical mechanics of different types of nonreciprocal interactions and discovered some surprising results—such as that extreme temperature gradients can be generated on the particle scale.

“I think the greatest significance of our work is that we rigorously showed that certain classes of essentially nonequilibrium systems can be exactly described in terms of the equilibrium’s statistical mechanics (i.e., one can derive a pseudo-Hamiltonian which describes such systems),” Ivlev, at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, told Phys.org. “One of the most amazing implications is that, for example, one can observe a mixture of two liquids in detailed equilibrium, yet each liquid has its own temperature.”

One example of a system with nonreciprocal interactions that the researchers experimentally demonstrated in their study involves charged microparticles levitating above an electrode in a plasma chamber. The violation of Newton’s third law arises from the fact that the system involves two types of microparticles that levitate at different heights due to their different sizes and densities. The electric field in the chamber drives a vertical plasma flow, like a current in a river, and each charged microparticle focuses the flowing plasma ions downstream, creating a vertical plasma wake behind it.

Although the repulsive forces that occur due to the direct interactions between the two layers of particles are reciprocal, the attractive particle-wake forces between the two layers are not. This is because the wake forces decrease with distance from the electrode, and the layers are levitating at different heights. As a result, the lower layer exerts a larger total force on the upper layer of particles than the upper layer exerts on the lower layer of particles. Consequently, the upper layer has a higher average kinetic energy (and thus a higher temperature) than the lower layer. By tuning the electric field, the researchers could also increase the height difference between the two layers, which further increases the temperature difference.

“Usually, I’m rather conservative when thinking on what sort of ‘immediate’ potential application a particular discovery (at least, in physics) might have,” Ivlev said. “However, what I am quite confident of is that our results provide an important step towards better understanding of certain kinds of nonequilibrium systems. There are numerous examples of very different nonequilibrium systems where the action-reaction symmetry is broken for interparticle interactions, but we show that one can nevertheless find an underlying symmetry which allows us to describe such systems in terms of the textbook (equilibrium) statistical mechanics.”

While the plasma experiment is an example of action-reaction symmetry breaking in a 2D system, the same symmetry breaking can occur in 3D systems, as well. The scientists expect that both types of systems exhibit unusual and remarkable behavior, and they hope to further investigate these systems more in the future.

“Our current research is focused on several topics in this direction,” Ivlev said. “One is the effect of the action-reaction symmetry breaking in the overdamped colloidal suspensions, where the nonreciprocal interactions lead to a remarkably rich variety of self-organization phenomena (dynamical clustering, pattern formation, phase separation, etc.). Results of this research may lead to several interesting applications. Another topic is purely fundamental: how one can describe a much broader class of ‘nearly Hamiltonian’ nonreciprocal systems, whose interactions almost match with those described by a pseudo-Hamiltonian? Hopefully, we can report on these results very soon.”

 

References: www.phys.org

Within colors of bees and butterflies, an optical engineer’s dream is realized

withincolors

Evolution has created in bees, butterflies, and beetles something optical engineers have been struggling to achieve for years—precisely organized biophotonic crystals that can be used to improve solar cells, fiber-optic cables, and even cosmetics and paints, a new Yale-led study has found.

The Yale team used high-intensity X-rays at the Argonne National Laboratory in Chicago to investigate color-producing nanostructures within hair-like structures that cover some species of butterflies, weevils and beetles, bees, and spiders and tarantulas. They found that the architecture of these nanostructures are identical to chemical polymers engineered by chemists and materials scientists, according to the report published May 14 in the journal Nano Letters.
Engineers, however, have had difficulty organizing these polymers in larger structures that would make them commercially feasible.
“These biophotonic nanostructures have the same shapes commonly seen in blends of large, synthetic, Lego-like molecules called block copolymers, developed by chemists,” said lead author Vinod Saranathan, former Yale graduate student and now faculty member at Yale-NUS College in Singapore.

These artificial nanostructures need to be an order of magnitude larger—such as that found in the scales of beetles and butterflies—in order to interfere with light and make saturated colors. Engineers, chemists, and physicists currently find it difficult to control the self-assembly of synthetic polymers to achieve the desired shape of molecules over a large area, Saranathan said.

1-withincolors

“Arthropods such as butterflies and beetles, which have evolved over millions of years of selection, appear to routinely make these photonic nanostructures using self-assembly and at the desired optical scale just like in modern engineering approaches,” said Richard Prum, the William Robertson Coe Professor in the Department of Ecology and Evolutionary Biology and senior author of the paper.

References: www.phys.org

How to turn a basic electronics lab into a low-cost, advanced telecommunications one

1-howtoturnaba

A piece of work by the NUP/UPNA-Public University of Navarre on how to turn a basic electronics lab into a low-cost, complete telecommunications lab has received the best paper award in the category of “Innovative Materials, Teaching and Learning Experiences in Engineering Education” at the 6th IEEE Global Education Conference (EDUCON). The conference, held recently in Tallinn (Estonia), is regarded as one of the main events worldwide in the field of engineering education.

The award-winning paper entitled “Turning a basic electronics lab into a low-cost communication systems lab” was presented by its author, Antonio López-Martín. This NUP/UPNA professor has connected the basic instrumentation of an electronics lab to a computer and has written some software which allows the measuring data to be acquired and complex, costly instrumentation equipment for communications to be emulated on the computer. That way it is possible to give experimental classes in telecommunications using economical equipment already existing at most universities without any additional expense or additional learning time having to be devoted to the instrumentation.

As Antonio López-Martín pointed out, “the invention is particularly attractive for universities in developing countries that cannot afford the expensive equipment needed for a degree in Telecommunications Engineering”. The work has made a considerable impact in the international community and the software has already been transferred to universities in the United States and Mexico and to a research centre in Australia.

This author was previously the first European to receive the award for best paper in “IEEE Transactions on Education”, the journal that is a reference worldwide in engineering education.

References:www.phys.org

DARPA seeks a “100x zoom lens” for seeing distant space objects more clearly

darpaseeksa1

Imaging of Earth from satellites in space has vastly improved in recent years. But the opposite challenge—using Earth-based systems to find, track and provide detailed characterization of satellites and other objects in high orbits—has frustrated engineers even as the need for space domain awareness has grown. State-of-the-art imagery of objects in low Earth orbit (LEO), up to 2,000 km (1,200 miles) high, can achieve resolution of 1 pixel for every 10 cm today, providing relatively crisp details. But image resolution for objects in geosynchronous Earth orbit (GEO), a favorite parking place for space assets roughly 36,000 km (22,000 miles) high, drops to just 1 pixel for every 2 meters, meaning many GEO satellites appear as little more than fuzzy blobs when viewed from Earth. Enabling LEO-quality images of objects in GEO would greatly enhance the nation’s ability to keep an eye on the military, civilian and commercial satellites on which society has come to depend, and to coordinate ground-based efforts to make repairs or correct malfunctions when they occur.
Achieving that goal will require radical technological advances because traditional or “monolithic” telescopes designed to provide high-resolution images of objects in GEO would be too physically and financially impractical to construct. For instance, achieving image resolution of 1 pixel to 10 cm for objects at GEO would require the equivalent of a primary imaging mirror 200 meters in diameter—longer than two football fields. To overcome these limitations and expedite the possible development of revolutionary benefits, DARPA has issued a Request for Information (RFI) (go.usa.gov/3Buvx) seeking specific technological information and innovative ideas demonstrating the potential for high-resolution imaging of GEO objects.
The RFI envisions a ground-based system that would be a sparse-aperture interferometer, which instead of relying upon one primary imaging mirror would measure the interference patterns of light detected by multiple smaller telescopes, from which a composite image could be derived. The GEO-imaging interferometer would rely on only passive (solar) illumination or thermal self-emission from imaged objects and could require the use of many telescopes, quite likely in a reconfigurable array. Responses to the RFI may inform a potential future program.
“We’re looking for ideas on how to create ground-based sparse aperture telescope systems that would provide GEO imagery as clear as current LEO imagery,” said Lindsay Millard, DARPA program manager. “This ‘100x zoom lens’ would provide the first ground-based capability to quickly assess anomalies that happen to GEO satellites, such as improperly deployed antennas or partially unfurled solar panels. With that capability, satellite owners could identify and fix problems more effectively and increase their satellites’ operating lifetimes and performance.”
“The image resolution this RFI envisions—down to a milli-arcsecond, or approximately one-3.6-millionth of a degree—would be up to 100 times more powerful than the current state of the art,” Millard continued. “Beyond helping us achieve our immediate needs on orbit, that improvement could significantly advance astronomy research, helping us learn about black holes and galaxy dynamics, as well as characterizing nearby exoplanets and detecting more-distant ones.”
The RFI invites short responses (3 pages or fewer) that explore some or all of the following technical areas:
Direct atmospheric phase measurement: Information on methods to directly and locally measure atmospheric conditions to enable collection of clear data at the distances between apertures envisioned for the system, as well as decrease system complexity and infrastructure requirements
Meter-class replicated optics and compensation of low-quality optics: Information about replicated optics technology applicable to telescopes 0.5 meter to 5 meters in diameter to potentially mitigate the need for high-precision fabrication, and reduce fabrication cost and timescales by an order of magnitude over conventional optical manufacturing methods
Image-formation algorithms: Ideas on novel image formation algorithms and post-processing techniques that would enable reliable image reconstruction from sparse aperture or similar imaging systems
Interferometry demonstration testbeds: Information about existing facilities that may provide economical and expedient means of demonstrating such technologies by utilizing existing infrastructure
To maximize the pool of innovative proposal concepts, DARPA strongly encourages participation by non-traditional performers, including small businesses, academic and research institutions and first-time government contractors. For this RFI, DARPA particularly seeks expertise in astronomy, novel optical design and quantum optics as it applies to long-baseline interferometry.

Refrences: phys.org